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To describe the interaction of electromagnetic waves with a polarized medium, electric and magnetic relaxa-
tion times are introduced. A solution to the problem of periodic boundary regime propagation with regard for
the hereditary characteristics of the absorbing medium, which qualitatively agrees with the experimental data,
has been obtained.

This paper considers the electric and thermal fields created by macroscopic charges and currents in continuous
media. From the practical point of view it is interesting to model local heat releases in media under the action of a
high-frequency electromagnetic field. In so doing, it is necessary to take into account the fact that the energy absorp-
tion influences the electromagnetic wave propagation, since the transfer processes are interrelated.

The aim of the paper is to analyze the existing approaches to the description of the propagation of high-fre-
quency electromagnetic waves in media with absorption and formulate a new physicomathematical model taking into
account in nonstationary constitutive equations the delay between the polarization field and the external electromagnetic
field.

As is known, for slow changes in the electric field the instantaneous value of current J(t) is determined by
the value of the electromotive force U(t) at the same instant of time according to U = RJ(t). At arbitrary frequencies
in the oscillatory circuit the resistance Z(ω) depends on the frequency, and the function U(ω) = Z(ω)J(ω) is complex.
Here Z(ω) is a complex resistance (or conductor impedance), to find which circuit capacity C and inductance L are
introduced.

In an oscillatory circuit with continuously distributed parameters, the energy dissipation is related to the di-
electric losses as a result of the frequency dependence of the relative dielectric constant ε(ω) [1]. In the general case,
the value of ε(ω) is also complex, and the relation between the electric displacement and electric field vectors is of
the form [1] D = ε(ω)E, where ε(ω) = ε′(ω) − iε′′(ω), and ε′ and ε′′  are thereby determined by experiment.

At the present time, problems of dielectric heating of a continuous medium are reduced, in many cases, to the
consideration of the equivalent circuit, using lumped parameters such as capacitance, inductance, loss angle [2–4], and
relative dielectric loss factor [4, 5], which are found experimentally. With this approach great difficulties in estab-
lishing the temperature field of equivalent circuits arise. Polarization and the appearance of a double electric layer hav-
ing a certain electric moment also take place when media with different properties contact one another. The equivalent
circuits in layered media include a number of empirical "lumped" parameters: surface capacitance, surface resistance
[5–7]. If sinusoidal voltage is applied to the circuit, then the flowing current will phase-shift to the voltage.

The line current can always be broken down into a dissipative component (or conduction current), which is in
phase with the applied voltage, and a displacement current, which is time-shifted from the voltage. The exact physical
meaning that can be attached to these two components of current largely depends on the choice of the electric equiva-
lent circuit. There is no unique equivalent circuit — series or parallel connection of capacitor, resistor, and inductor —
all is determined by a more or less adequate agreement with the experimental data.

In practice, the value of the operating capacitor capacitance Ceff is judged by the current. The presence of in-
ductance in the capacitor increases its effective capacitance with increasing frequency, since in this case the current
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will increase due to the compensation of the reactance capacitive resistance by the inductive resistance. The relation
between the effective capacitance and the capacitor capacitance is defined by the formula [4]

Ceff = C ⁄ (1 − ω2
LC) .

This expression shows that the frequency dependence of the effective capacitance increases with increasing ω, L, and
C. The presence of ohmic resistance R (e.g., resistance of the capacitor plate connected in series with the capacitor)
also leads to the frequency dependence of capacitance [4]

Ceff = C ⁄ (1 + ω2
C

2
R

2) .

In electrochemical capacitors, the role of one of the plates is played by a double electric layer with a specific
resistance considerably exceeding the resistance of metal plates; therefore, for such capacitors a decrease in capacitance
with decreasing frequency is already observed in the region of acoustic frequencies [6]. Circuits equivalent to the elec-
trolytic capacitor are very cumbersome and have up to 12 components R, L, and C, which makes it difficult to obtain
the true value of the electrolyte capacitance. In [6], experimental methods for measuring the dielectric properties of
electrolyte solutions at different frequencies are given and the values of ε′ and ε′′ are determined, and the frequency
dependences of dispersion and absorption are thereby essentially different consequences of one phenomenon — dielec-
tric polarization inertia. Actually, the dependence ε(ω) can be explained, as mentioned above, by the presence of resis-
tance of the double electric layer and by the fact that the electrochemical cell in the electrochemical capacitor is a
system with continuously distributed parameters, in which the signal velocity is finite.

In fact, ε′ and ε′′ are some integral characteristics of the material at some fixed temperature and depend on
the sample geometry and the thermophysical characteristics and properties of the double electric layer. As is known [1,
8], in the case of a field arbitrarily depending on temperature, any reasonable determination of absorbed energy in
terms of ε(ω) turns out to be impossible. This can only be done by concretizing the time dependence of the field E.

For the quasi-monochromatic field we have [8]

E (t) = [E0 (t) exp (− iωt) + E0
∗
 (t) exp (iωt)] ⁄ 2 ,

H (t) = [H0 (t) exp (− iωt) + H0
∗
 exp (iωt)] ⁄ 2 .

The values of E0(t) and H0(t) change very slowly in time 2π ⁄ ω and, according to [8], for absorbed energy upon av-
eraging over the frequency ω we obtain the expression

∂D (t)
∂t

 E (t)

__________

 = 
d (ωε′ (ω))

4dω
 
∂
∂t

 [E0 (t) E0
∗
 (t)] + 

ωε′′
2

 E0 (t) E0
∗
 (t) +

+ i 
d (ωε′′ (ω))

4dω
 




∂E0 (t)
∂t

 E0
∗
 (t) − 

∂E0
∗
 (t)

∂t
 E0 (t)




 ,

where derivatives are taken at the "carrier" frequency ω.
Note that in the case of an arbitrary function E(t) its representation in the form of E(t) = a(t) cos ϕ(t) is dif-

ficult because it is impossible to uniquely give the amplitude a(t) and the phase ϕ(t). It is not clear how to partition
E(t) into cofactors a and cos ϕ. If we complete the real oscillation of E(t) with an imaginary part W(t) and go to the
complex representation [9] E′(t) = V(t) + iW(t), then even greater difficulties arise. In this case, E′(t) = a(t) exp (iϕt),
where the amplitude a(t), the phase ϕ(t), and the instantaneous frequency ω = dϕ/dt are defined by the known expres-
sions

a (t) = √V2 (t) + W2 (t)  ,   ϕ (t) = arccos 
V (t)
a (t)

 = arcsin 
W (t)
a (t)

 ,
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ω (t) = 
1

a
2
 (t)

 



V (t) 

dW (t)

dt
 − W (t) 

dV (t)
dt




 .

The time derivatives of a(t) considerably complicate the operations with the passage to complex variables. The
problems arising thereby are considered in more detail in [9], where it is emphasized that without unique determination
of the amplitude, phase, and frequency some methods using a complex representation and pretending to a higher ac-
curacy become incorrect.

Summarizing the foregoing, it may be stated that the calculation of dielectric losses is mainly empirical.
Therefore, in modeling the electromagnetic wave propagation and absorption, one encounters fundamental difficulties.
The laws of electromagnetic wave absorption in the region of the double electric layer and outside it are different. The
dependences ε(ω) and µ(ω) are not only the characteristics of the material but in many ways also functions of the
process. They hold only for those experimental conditions under which they were determined. Therefore, it is difficult
to describe the character of this process by the above dependences. Moreover, one should take into account that the
electrophysical characteristics of the medium strongly depend on the temperature, as a rule, and, therefore, the value
of dielectric losses is strongly influenced by the thermophysical properties of the material and the heat-exchange con-
ditions. The features of the electromagnetic-wave passage through the interface with allowance for the influence of the
double electric layer were considered in detail earlier in [10].

As we see it, the heat release in media under the action of nonstationary electric fields can be calculated on
the basis of taking into account the interaction of the electromagnetic waves and thermal fields as a system with con-
tinuously distributed parameters based on the field equations and the energy equation.

In considering an electromagnetic field interacting with a material medium, let us make use of the Maxwell
equations

∂D
∂t

 + Jq = rot H ,   div D = ρ ,   D = ε0E + P , (1)

∂B
∂t

 = rot E ,   div B = 0 ,   B = µ0H + I , (2)

where P = (ε − 1)ε0E and I = (µ − 1)µ0H are the electric and magnetic polarizations, respectively.
We assume that in a continuous medium at the initial instant of time there are no space charges and they do

not arise during the process. In a layered system, the space charge of the double electric layer always exists. It will
be considered separately. We give the energy equation in the form

ρCp 
dT
dt

 = div (k (T) grad (T)) + Q . (3)

According to [8], the electromagnetic energy converted into heat is defined by the expression

Q = ρ 

E 

d
dt

 


D
ρ



 + H 

d
dt

 


B
ρ







 + JqE . (4)

If ε, µ, and ρ are constant and λ → 0, then the heat release is absent; therefore, the dielectric losses are as-
sociated with the introduction of ε′(ω) and ε′′ (ω).

The introduction of complex variables Z(ω) and ε(ω) is a successful technique for integral processing of ex-
perimental data, though it does not permit calculating the charge of the double electric layer and local heat releases.
Therefore, experimental data for the circuit provide the possibility of modeling the process only under the given ex-
perimental conditions, since the double-layer capacitance proper is a function of the process. It is the presence of ca-
pacitance that makes it impossible to characterize a continuous medium by the specific electrophysical properties alone
[11]. In the case of a series connection of "small" and "large" capacitors, the resulting circuit capacitor is actually
equal to the "small" one.
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A characteristic feature of high frequencies is the fact that the polarization field (polarization) lags behind the
change in the external field; therefore, it is expedient to determine the polarization vector from the solution of the
equation P (t + τe) = (ε − 1)ε0E(t) with allowance for the relaxation time τe. Restricting ourselves to the first term of
the Taylor expansion of P (t + τe), from this equation we obtain

P (t) + τe 
dP (t)

dt
 = (ε − 1) ε0E (t) . (5)

The solution of (5), provided that at the initial instant of time P = 0, is of the form

P = 
(ε − 1) ε0

τe
 ∫ 
t0

t

E (τ) exp (− (t − τ) ⁄ τe) dτ . (6)

To exclude the influence of the initial conditions and transient processes, as usual, we assume that t0 = −∞.
If the boundary regime lasts for a rather long time, then, due to the friction inherent in any real physical system, the
influence of the initial data weakens in the course of time. Thus, we naturally arrive at a problem without initial con-
ditions:

P = 
(ε − 1) ε0

τe
 ∫ 
−∞

t

E (τ) exp (− (t − τ) ⁄ τe) dτ . (7)

Consider the case of a harmonic field E = E0 sin ωt. Using (7), for the electric induction vector we have

D = ε0E + P = 
(ε − 1) ε0

τe
 ∫ 
−∞

t

E (τ) exp (− (t − τ) ⁄ τe) dτ + ε0E0 sin ωt =

= 
E0 (ε − 1) ε0

1 + ω2τe
2

 (sin ωt − ωτe cos ωt) + ε0E0 sin ωt . (8)

The electric induction vector is the sum of two physical quantities: the field strength and the polarization of
a unit volume of the medium.

If the change in the substance density is small, then from formula (4) for the local instantaneous heat release
we obtain, due to the action of the electric component of the field alone, the expression

Q = E 
dD

dt
 = 

E0
2
 (ε − 1) ε0

1 + ω2τe
2

 (ω sin ωt cos ωt + ω2τe sin
2
 ωt) + λE0

2
 sin

2
 ωt . (9)

But then the mean value of Q in time 2π ⁄ ω is

Q = 
1

2
 
E0

2
 (ε − 1) ε0

1 + ω2τe
2  ω2τe + 

λE0
2

2
 . (10)

If the relaxation time is Maxwell (in the general case it is not so) [2], i.e., τe = (ε − 1)ε0
 ⁄ λ, then

Q = 
1

2
 
E0

2λω2τe
2

1 + ω2τe
2 + 

λE0
2

2
 . (11)
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This expression precisely coincides with the Skanavi formula [12] but was obtained from different considerations —
from Eq. (5). At large frequencies ω → ∞ the heat release is no longer frequency- dependent, which agrees with (11)
and experiment [12].

In using the relaxation equation for the electric field, it is also necessary to take into account the lag of the
magnetic field if the magnetic polarization lags behind the change in its intensity:

I (t) + τm 
dI (t)

dt
 = µµ0H (t) . (12)

Consider the case where the electric and magnetic fields have the form E = E(r) exp (iωt), H = H(r) exp
(i(ωt + ϕ)), where ϕ is an arbitrary phase. In a dissipative medium, changes in E and H occur with a phase shift. For
the electric induction vector we have

D = ε0E + ∫ 
−∞

t (ε − 1) ε0

τe
 E (r) exp (iωt) exp(− (t − τ) ⁄ τe) dτ = ε0E + 

(ε − 1) ε0

1 + iωτe
 E . (13)

From Eq. (13) the dependence ε(ω) is obtained, which, as shown above, is a consequence of the nonstationary con-
stituent equation (5).

An analogous formula can also be obtained for the magnetic induction:

B = µ0H + 
µ0 (µ − 1)
1 + iωτm

 H . (14)

In this case, the ordinary relations

dD

dt
 = iωD ,   

d
2
D

dt
2  = − ω2

D ,   
dB

dt
 = iωB . (15)

hold.
Analysis of formulas (13), (14) shows that the values of electric and magnetic induction are determined by the

whole prehistory of the change with time in the electromagnetic field, i.e., polarized media exhibit hereditary proper-
ties.

Multiply the left and right sides of Eq. (1) by µ0(µ + iωτm)/(1 + iωτm) and differentiate it with respect to
time. Apply the operation rot to Eq. (2). As a result, in view of (14), (15), excluding the magnetic field from (1), (2),
we obtain

µ0 



1 + 

µ − 1

1 + iωτm




 



− ω2ε0 




1 + 

ε − 1

1 + iωτe




 E + iλωE




 = ∆E . (16)

Without the above manipulations, using, as usual, in Eqs. (1) and (2) the conditions for the plane wave, it is
necessary to calculate the phase shift between E and H, which in a dissipative medium with time dispersion is diffi-
cult.

In what follows, we will assume the wave to be plane and monochromatic. Consider the one-dimensional case
of E = E(x) exp (iωt). Reducing by exp (iωt), from (16) we obtain the dispersion equation

d
2
E

dx
2  + k

2
E = 0 , (17)

where
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k
2
 = µ0 




1 + 

µ − 1

1 + iωτm




 



ω2ε0 




1 + 

ε − 1

1 + iωτe




 − iλω




 = a1 − ib1 . (18)

Expressions for a1 and b1 after some manipulations can be written in the form

a1 = µ0ε0εω
2
 
(µ + ω2τm

2 ) (ε + ω2τe
2)

(1 + ω2τm
2 ) (1 + ω2τe

2)
 − 

µ0ωτm (µ − 1)

1 + ω2τm
2

 







ε0ω
3τe (ε − 1)

1 + ω2τe
2  + λω







 ,

b1 = µ0 
(µ + ω2τm

2 )

(1 + ω2τm
2 )

 







ε0ωτe (ε − 1) ω2

1 + ω2τe
2  + λω







 + µ0ε0 

(εω2τe)

(1 + ω2τe
2)2

 
ω3τm (µ − 1)

(1 + ω2τm
2 )

 .

(19)

According to [13], to take into account the lag, it is enough to determine the dependence ε(ω). In so doing,
the equation of telegraphy for the electric field vector is assumed to be valid [14]. For the magnetic field in the con-
stituent equation the lag is neglected [13]. It can easily be shown that in this case the eigenvalue problem will have
a different form.

Consider the problem on the periodic boundary regime propagation on the interval (0, l) analogously to [15]
but taking into account the relaxation

E (0, t) = 0 ,   E (l, t) = A exp (iωt) . (20)

Assuming E(x, t) = E(x) exp (iωt), for Eq. (17) we have

E (0) = 0 ,   E (l) = A . (21)

Solving (17) with the boundary conditions of (20), (21), we find E(x) = C1 sin kx. At x = l C1 = A sin kl,
so that [15]

E (x) = A 
sin kx
sin kl

 = X1 (x) + iX2 (x) , (22)

where X1 and X2 are the real and imaginary parts of E(x). The sought solution can be given in the form

E (x, t) = [X1 (x) + iX2 (x)] exp (iωt) = U1 (x, t) + iU2 (x, t) ,

where U1(x, t) = X1(x) cos ωt − X2(x) sin ωt; U2(x, t) = X1(x) sin ωt + X2(x) cos ωt. The solution of the general
problem without the initial conditions at E(0, t) = µ1(t) and E(l, t) = µ2(t) is defined as the sum of two terms for each
of which one of the boundary conditions is inhomogeneous [12].

For problem (20), (21), where on the sample surface with x = l a periodic electric field is active, E(l, t) = A
exp (iωt) and on its opposite side with x = 0, E(0, t) = 0, the values of the function  E(x) /A =  sin kx sin kl  were
obtained for various values of k, thickness l, conduction λ, and relative permittivity ε.

In this case, the equality to zero of the electric field strength corresponds to the zero charge flow. Indeed, the
charge flow is defined by the sum of the conduction current and the displacement current. If E(x, t) = E(x) exp (iωt),
then at x = 0 E(0) = 0 should take place. This condition is strictly fulfilled for a semibounded dissipative medium.
Therefore, in the calculations the sample thickness was assumed to be fairly large (l = 1 m), where the influence of
the geometry on the E(x) distribution is negligible.

Figure 1 gives the dependence of the electric field dimensionless amplitude on the sample thickness
 E(x)  ⁄ A for various values of the specific conduction (a) and magnetic permittivity (b). The given data show that an
increase in λ and µ leads to a larger absorption of the electric wave, which agrees with the experimental data. Indeed,
according to the experimental data of [16], the electric field in the microwave region decays exponentially. At the
same time, when the classical solution without introducing the relaxation time is used [15] and for λ = 0 the solution
is linear (the diagram of the linear function is not given here).
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Figure 1c, d shows the dependences of the dimensionless amplitude of the electric field  E(x) /A on the sam-
ple thickness for various values of the relaxation time of the electric and magnetic fields. Note that the magnetic re-
laxation time is, as a rule, an order of magnitude smaller than the electric relaxation time. Analysis of the curves
given in Fig. 1c shows that a decrease in the magnetic relaxation time leads to a large signal attenuation. Along with
this, the dependences given in Fig. 1d show that a resonance time of electric relaxation, at which the wave absorption
is maximum, exists. If the electric relaxation time is fairly small, then in the medium effects characteristic of the
standing wave with the presence of maxima and minima of the electromagnetic wave amplitude can arise.

Note that in a dissipative medium there is always a phase shift between E and H. The proposed computing
method based on reduction of the field equations to one equation of telegraphy for the electric field vector does not
require knowledge of the value of this shift. In the limit at ω → ∞ the functions ε(ω) and µ(ω), according to formulas
(13) and (14), tend to unity due to the fact that as a sufficiently rapid change in the field the polarization processes
have no time at all to proceed. At the same time, the dispersion equation (18) for k2 as ω → ∞ gives the dependence
of the values of a1 and b1 on the field frequency. This paradox is due to the fact that in finding the real and imagi-
nary parts of k2, we multiply and divide the denominators by the complex-conjugate quantities (1 − iωτe)

−1 and
(1 − iωτm)

−1, which as ω → ∞ are indeterminate. However, it should be remembered that the upper boundary of the
frequency should satisfy the condition ω << c ⁄ δ.

In conclusion, note that Eq. (5) is based on the classical Debye model [18] pertaining to substances whose
particles have a permanent electric dipole moment. The above mechanism of polarization consists of partial alignment
of dipoles along the electric field, which is opposed by the process of dipole disorientation because of thermal colli-
sions. The restoring "force," according to Eq. (5), does not lead to electric polarization oscillations. It acts as if the
permanent electric dipoles were characterized by a strong attenuation. The relaxation Debye polarizability is charac-
teristic of molecules of many liquids and solids [18]. Initially, the polarization aggregates of Debye oscillators return
to the equilibrium state according to the expression

Fig. 1. Sample-thickness distribution of the electric field E(x) dimensionless
amplitude (f = 2⋅109 Hz, l = 1 m, ε = 15) for various values of electrical con-
duction — a [1) λ = 0; 2) 1; 3) 20 Ω⋅m−1], permeability — b [1) µ = 1; 2)
10; 3) 50; 4) 200], and relaxation times — c, d [1) τm = 10−7; 2) 10−8; 3)
10−9 sec (c); 1) τe = 0.5⋅10−10; 2) 10−8; 3) 10−9; 4) 10−8 sec (d)]. µ = 5, τe
= 10−9; τm = 10−7 sec (a); λ = 0; τe = 10−10; τm = 10−7 sec (b); µ = 0; λ =
0; τe = 10−10 (c), and τm = 10−7 sec (d).

418



P (t) = P (0) exp (− t ⁄ τe) .

Unlike a homogeneous medium, in which the volume charge can be ignored, at the contact boundary of
media with different electrophysical properties a spatial distribution of electric charges — a double layer whose effec-
tive thickness has molecular dimensions — is established. In [10, 17, 19], it is shown that in this case at the interface
equality of total currents and energy fluxes with allowance for thermoelectric phenomena should be realized. The ex-
pressions for the charge and energy fluxes will be of the form

Jd = λ (T) 

α (T) dT

dx
 + E


 + 

∂D
∂t

 ,   Jh = k (T) dT
dx

 + JqÏ . (23)

Using (23) and (1)–(3), one can obtain an interrelated system of equations describing the interaction of thermal and
electric phenomena in the region of the double electric layer. This approach permits calculating the charge of the dou-
ble electric layer [10, 17, 19].

At the present time, for a monochromatic wave propagating in a homogeneous medium with a small attenu-
ation coefficient, an expression of the form Q = ωE0

2 /2 is often used [16]. In so doing, it is assumed that the wave
length is not only small compared to the attenuation length ∆ (e-fold decrease in the amplitude), but the stronger con-
dition ∆ >> l, where l is the linear size of the medium volume under consideration in the direction of the wave propa-
gation should also be met [20]. Moreover, plane monochromatic waves, according to [20], are considered away from
the media interface.

The proposed computing method does not contain the above limitations and can be used to model waves with
a strong attenuation, including the region close to the media interface.

Thus, to model the propagation and absorption of electromagnetic waves in a polarized medium and calculate
the dielectric losses, it is suggested to use the telegraph equation for the electric field vector and the heat-conduction
equation with allowance for the thermoelectric phenomena. The polarization current is thereby assumed to be a com-
ponent of the conduction current.

To model thermal fields in a continuous medium, it suffices to give the charge and energy fluxes at the in-
terfaces as well as information about its specific thermophysical and electrophysical properties. The introduction of
such parameters as capacitance, surface capacitance, surface resistance, loss angle, real and imaginary parts of the rela-
tive dielectric constant, which give only some averaged integral characteristics of and a continuous medium, is not
needed.

In this work, for the first time an attempt has been made to take into account the lag of the polarization field
and the external electromagnetic field that is due to not only the electric, but also the magnetic phenomena of dipole
relaxation. We have obtained a solution to the problem on the periodic boundary regime propagation with regard for
the hereditary characteristics of the polarized medium, which qualitatively agrees with the experimental data.

Part of this work was supported by the Belarusian Republic Basic Research Foundation (project No. T03-162)
and the Science Foundation of Poland "Kasy J. Manawskiego".

NOTATION

B, magnetic induction vector; D, electric displacement vector; E, electric field vector; H, magnetic field vec-
tor; Jq, charge flux density; I, magnetic polarization vector; P, electric polarization vector; A, maximum value of elec-
tric field amplitude; a, amplitude; C, circuit capacitance; Cp, heat capacity; E0, electric field amplitude; H0, magnetic
field amplitude; J, instantaneous value of current intensity; k(T), heat-conductivity coefficient; l, linear size of a region;
L, circuit inductance; Q, electromagnetic energy dissipation; R, circuit resistance to direct current; Pr, Peltier coeffi-
cient; t, time; T, temperature; U, electromotive force; x, coordinate; Z, complex resistance (conductor impedance); α,
specific thermoelectromotive force; ε, relative permittivity; ε′ and ε′′ , real and imaginary parts of relative permittivity;
ε0, electric constant; δ, characteristic atomic size; λ, specific electric conduction; ρ, density; τe and τm, electric and
magnetic relaxation time; ϕ, phase; µ, relative permeability; µ0, magnetic constant; ω, cyclic wave frequency. Sub-
scripts: 1, first medium; 2, second medium; 0, initial state; eff, effective; e, electric; m. magnetic; d, displacement; q,
charge; h, heat; *, complex conjugate quantity; p, pressure.

419



REFERENCES

1. L. D. Landau and E. M. Lifshits, Electrodynamics of Continua [in Russian], Nauka, Moscow (1982).
2. S. G. Kalashnikov, Electricity [in Russian], Nauka, Moscow (1985).
3. I. E. Tamm, Principles of Electricity Theory [in Russian], Nauka, Moscow (1989).
4. V. G. Renne, Electric Capacitors [in Russian], Nauka, Leningrad (1969).
5. P. Perre and I. W. Turner, in: Proc. 10th Int. Drying Symp. IDS 96, "Drying-96", 30 July–2 August, Krakow,

Poland. Krakow (1996), pp. 183–184.
6. E. Jaeger (ed.), Measurement Techniques in Electrochemistry [Russian translation], Vol. 2, Mir, Moscow (1977).
7. S. P. Novitskii and A. V. Filatov, Study of the processes of charge transfer in Berlin blue films, E′ lektrok-

himiya, 35, No. 9, 1076–1080 (1999).
8. Yu. S. Barash and V. L. Ginzburg, On the expressions for the energy density and releasing heat in the electro-

dynamics of dispersive and absorbing media, Usp. Fiz. Nauk, 118, Issue 3, 523–537 (1976).
9. D. E. Vakman and L. A. Vainshtein, Amplitude, phase, frequency — basic concepts of vibration theory, Usp.

Fiz. Nauk, 123, Issue 4, 657–681 (1977).
10. N. N. Grinchik and E. F. Nogotov, On the problem of correct description of electromagnetic waves in layered

media with magnetic properties, Inzh.-Fiz. Zh., 75, No. 6, 36–42 (2002).
11. Boa-Te Chu, Plasma in a Magnetic Field and Direct Thermal-to-Electric Energy Conversion [Russian transla-

tion], Mir, Moscow (1962).
12. T. I. Skanavi, Physics of Dielectrics (The Weak-Field Region) [Russian translation], IL, Moscow (1949).
13. R. N. Nigmatulin, F. L. Sayakhov, L. A. Savel’eva, Cross phenomena of transfer in disperse systems interacting

with a high-frequency electromagnetic field, Dokl. Ross. Akad. Nauk, 377, No. 3, 340–343 (2001).
14. Yu. A. Il’inskii and L. V. Keldysh, Interaction of Electromagnetic Radiation with Matter [in Russian], Nauka,

Moscow (1989).
15. A. M. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).
16. E. C. Okress (ed.), Microwave Power Engineering. Vol. 2. Applications [Russian translation], Mir, Moscow

(1971).
17. N. N. Grinchik and V. A. Tsurko, On the Problem of Modeling Nonstationary Electric Fields in Layered

Media [in Russian], Preprint No. 3 (557) of the Institute of Mathematics, National Academy of Sciences of Be-
larus, Minsk (2001).

18. C. Boren and D. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir,
Moscow (1986).

19. V. G. Anisimovich, N. N. Grinchik, V. A. Zhuk, S. I. Sakovets, A. A. Khmyl’, and V. A. Tsurko, Nonstation-
ary model of heat and mass transfer in electrochemical systems, Inzh.-Fiz. Zh., 73, No. 3, 561–566 (2000).

20. E. A. Turov, Constitutive Equations of Electrodynamics [in Russian], Nauka, Moscow (1983).

420


